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Abstract  

The Umkehreinwand of Loschmidt and the Wiederkehreinwand of Zermelo have been 
reexamined. The former paradox depends on the augument that for a dynamical system, 
upon the reversal of the velocities of all the molecules, the H function retraces its 
sequence of values so that dH/dt will change its sign. The latter paradox depends on the 
argument that the H function returns infinitely close to its value after a Poincare' quasi- 
period and therefore cannot be decreasing all the time. While the main contention of  
the two paradoxes is correct, that the H theorem is inconsistent with classical dynamical 
laws, the arguments there can be considerably simplified and the "paradoxes" answered 
more directly. If the distribution function f(qK, PK, t) is governed by an equation which 
is time-reversal invariant (such as the Liouville equation for a closed dynamical system), 
then it can be shown immediately that dH/dt = 0, H = cons. In this case, both paradoxes 
disappear, but together with them, the dH/dt < 0 part of the H theorem also has dis- 
appeared, i.e., there is no second Jaw of thermodynamics. Iff(qK, PK, t) is governed by 
an equation which is not time-reversal invariant (such as the Boltzmann equation, or the 
Master Equation for Markovian processes), then (1) there is no argument for l a n d  H(t) 
to retrace their sequence of values upon the reversal of all the velocities of the system, (2) 
there is no quasiperiod in which l a n d  H(t) return to their earlier values. In this case, both 
paradoxes disappear also, but then one must go beyond classical dynamics in order to 
maintain the H theorem. 

1. Introduction 

The H t h e o r e m  states tha t  the  H func t ion  def ined  by  

H(t)  = f f (qK,  PK, t) ln f ( q K , P K ,  t) dqKdPK 

where  qK, PK = q l, • . . ,  qn ,P l ,  • • ", PK, satisfies the  re la t ion 

(1.1) 

dH(t) /dt  <<, 0 (1.2) 
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The paradoxes of Loschmidt (1876) and of Zermelo (1896) are the most 
famous of many discussions of the theorem. The former aromaes as follows: 

Consider a system A whose phase (qK, PK) passes through the points 
P1, P2, P3 . . . .  of the F space at time t~, t2, t3 . . . . .  According to (1.2), we 
have 

HA( t l )>~HA( t2 )> /HA( t3 )  . . . .  tl < t 2  < t 3  " ' "  (1.3) 

Consider another system B which differs from A only in having all the 
velocities opposite to those of  A ,  i.e., 

q'K = qK, P'K = -- PK 

The phase (qK, px.) of B passes through the points • • • r3 ,  2, r l  at time 
t'3 < {2 < t'l • • • Fn and Pn are correspond points in the sense that 

Pn = (qK, PK), P'n = (qg,  - PK) (1.4) 

and according to (1.1), 

HA (tn) = HB(t'n) (1.5) 

and from (1.3) 

, t v . . . ,  v v , . . .  HB(t'I) ) H B ( t 2 )  > HB( 3) t3 < t2 < tt  (1.6) 

which means 

dHB/dt  >~ 0 (1.7) 

This is contradictory to (1.2). 

The Zermelo (1896) argument is as follows: According to Poincar6's 
ergodic theorem, the phase (qK, PK) comes back infinitely near any given 
initial point in the F space after a sufficiently long time, the quasiperiod T, 
and the trajectory passes through points P'I tY2 P' . , , 3 , . .  infinitely close to 
P1, P2, P3, • •. at tl + T, t2 + T, t3 + T , . . . .  Zermelo argues that 

m(t l  + T) -~ n( t l ) ,  H(t2 + T) ~ m(t2), etc. (1.8) 

so that there is the paradox that H has kept on decreasing according to (1.3) 
and yet after a quasiperiod gets back to an earlier value (1.8). 

These and other criticisms of the H theorem in the original form have led 
Boltzmann to reinterpret the theorem on a probability basis. Thus the 
Stosszahlansatz in the Boltzmann equation is interpreted as giving an over- 
whelmingly large probability for H to decrease, and fluctuations in which H 
increases are allowed but are not explicitly contained in the Boltzmann 
equation. 

The many discussions on the H theorem have been summarized by the 
Ehrenfests (191 I), Tolman (1935), and ter Haar (1954, I955). The Ehrenfests 
in particular discuss the fluctuations of H in discrete steps due to molecular 
collisions. 
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2. Comments on the Losehmidt  and Zermelo Paradoxes 

On looking back at these two famous paradoxes, it seems that these 
criticisms can be answered in a more basic way. Consider first the nature of  
the equation that governs the variation of f (qK,  PK, t) with time. If  the 
equation 

df /dt  = I( f )  (2.1) 

is invariant with respect to time reversal, that is the transformation 

t -+ -- r ,  f ( q K ,  P K ,  t )  ~ f ( q K ,  - - P K ,  - - t - -  = f ( q K , P K ,  r )  (2.2) 

transforms (2.1) into 

dr/dr = I ( f )  (2.3) 

then it can be shown that I(f)  = 0 and therefore 1 

dH/dt  = 0, or H = cons. (2.4) 

1 The p r o o f  o f  ( t  2) is as follows. U p o n  velocity reversal, p ~ - p ,  let us deno te  

f ( q ,  p, t) -~ f (q ,  - p, t) =- f ' ( q ,  p, t) (a) 

Equa t ion  (a) mus t  hold for  arbi t rary velocities, i.e., 

d f  = I ( f )  ~ a f '  = I( f ' )  (b) 
dt  ~t 

or 

103~ Iff ') 

Upon  t reversal, we have (2.2),  which can be  expressed as 

f ( q ,  p, t) -* f lq ,  - p ,  - t )  = f ' ( q ,  p, - r )  ~ f ( q ,  p, r) 

By hypothes is ,  (2.1) is invariant wi th  respect  to t reversal, 

d;'=rm_~d7 
at Y/= Ig) 

i.e., 

10~ -- - z o  r ) 

Let the  t reversal be made  at t = r = 0. Then  (d) gives 

j~(q, p,  o)  = f ' ( q , p ,  o) 

so tha t  at t = r = 0, (f) gives 

z{f(q, p, o)) -+ - I ( f  (q, p, o)1 

Compar i son  wi th  (c) gives 

I(t') = 0 

(c) 

(d) 

(e) 

(f) 

(g) 

(h) 

(i) 
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For a dosed system governed by classical dynamical laws, Eq. (2.1) with 
I0  e) -- 0 is the Liouville equation for which (2.4) can be obtained immediately. 

I f f (qK,  pK, t) is governed by an equation which is invariant under the 
velocity reversal operation, i.e., 

PK -+ -- PK, f(qK, PK, t) -+f(qK, -- PK, t) =-T(qK, PK, t) (2.5) 

df/dt  = I( f )  -+ d~/dt = I(f) ,  H ( I f )  "+ H( ]~ = H ( i f )  

then it can immediately be seen that 

dn( l~ )  d e ( I f )  
(2.6) 

dt dt 

Invariance with respect to velocity reversal must be assumed in any plausible 
theory which is to apply to all possible velocities for the molecules. The 
Boltzmann equation, for example, satisfies this invariance requirement. The 
time-reversal invariance is, however, a much stronger condition and is not 
satisfied by the Boltzmann equation. 

With these general considerations, we are in a position to examine the two 
paradoxes. Consider the Loschmidt criticism. 

(i) I f f (qK,  PK, t) is governed by a time-reversal invariant equation (2.1) 
and (2.3), then we simply have (2.4) 

dH/dt  = 0 

and H is a constant, so that the inequality (1.7) disappears, together with the 
dH/dt  < 0 part of  the H t h e o r e m  dH/dt  <<. 0, i.e., there is no law of entropy 
increase. 

(ii) I f f (qK,  PK, t) is governed by a velocity-reversal invariant equation 
(2.5), then we must have (2.6), i.e., if 

dg(  I f ) /dt  <. 0 

the velocity-reversed system must also have 

dH(l~) /dt  ~< 0 (2.7) 

(iii) The basis (1.5) of the paradox is fallacious. I fdH/d t  4 = O, the equation 
governing f (qK, PK, t) cannot be time-reversal invariant, and reversing the 
velocities will not cause f t o  retrace its sequence of  values even when the 
phase (q~:, p~v) passes through P' P '  • " • ' " " 3, 2,P'1 at t3 < t'2 < t~ • where Pn 
and P'n correspond as in (1.4). f (qK,  PK, t) changes not only in value, but 
also in the functional form, with time and in an irreversible manner [since 
the equation 3f/Ot = I( f)  is not reversible]. Without (1.5), there is no paradox. 

Consider next the Zermelo paradox. Here again: Either ( i ) f (qK,  PK, t) is 
governed by a time-reversal invariant equation, in which case we have (2.4) 
and H is a constant, so for this case (1.8) is valid, but the paradox of  H 
decreasing and getting back to an earlier value after a quasiperiod disappears, 
or (ii) f (qK,  PK, t) is governed by an irreversible or stochastic equation in 
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which case f changes in time both in value and in functional form, 2 and in 
general there is no quasiperiod after whichf(qK, PK, t) and H(0  return to 
their earlier value, In this case, the relations (1.8) are not true and there is 
again no paradox. But then dH/dt <<. 0 is not a consequence of dynamical 
laws. 

3. Concluding Remarks 

To sum up, we believe that the many involved discussions of the H theorem 
can be simplified with our present understandings. 

(i) On classical dynamical laws, a closed dynamical system can have only 

H = const 

i.e., there is no law of increasing entropy. This is the contention of Eoschmidt 
and Zermelo. The arguments in the two paradoxes are greatly simplified by 
the general result (2.4). 

(ii) The f(qK, PK, 0 in the H function (1.1) satisfying the H theorem (1.2) 
cannot be governed by an equation which is a consequence of reversible 
dynamical taws; it could be an equation based on general probability assump- 
tions (for example, the Smoluchowski assumption for Markovian processes 
leading to the Master equation, or the Fokker-Planck equation) or on specific 
probability assumptions (such as the Boltzmann equation), or on other 
assumptions. In such cases, the contentions (1.5) and (1.8) in the paradoxes 
are not valid. 

(iii) In the face of these paradoxes and other criticisms, Boltzmann later 
interpreted the H theorem (1.2) on probability basis, that is, whenever H is 
above its minimum value, it has an overwhelmingly large probability to 
decrease, but an increase of H due to molecular collisions is not absolutely 
ruled out. In the particular case of the Boltzmann equation, the Stosszah- 
lansatz gives this large probability and (1.5) and (1.8) are not relevant. 

(iv) The really significant refinement of the original form of the H theorem 
is Boltzmann's later probability interpretation and the implied extension to 
include fluctuations. Recently Fox & Uhlenbeck (1969) have suggested the 
addition of a fluctuation term to the Boltzmann equation. Lee & Wu (1973), 
starting with the Liouvitle equation in the form of the B-B-G-K-Y hierarchy, 
have obtained such a fluctuation term on statistical consideration of the many- 
particle correlations. From a Boltzmann equation with fluctuation, one 
obtains immediately an H function which decreases with time in the main 
but has fluctuations. 
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